Limit Techniques Practice - 10/14/16

1. Evaluate $\lim_{x \to 0} x^3 \cos\left(\frac{1}{x}\right)$.

Solution: Note that the range of $\cos is [-1, 1]$, so $-1 \le \cos(1/x) \le 1$. Multiplying through by x^3 gives us $-x^3 \le x^3 \cos(1/x) \le x^3$ if x is positive. Notice that $\lim_{x\to 0^+} -x^3 = \lim_{x\to 0^+} x^3 = 0$, so by the Squeeze Theorem, $\lim_{x\to 0^+} x^3 \cos(1/x) = 0$. If x is negative, the inequalities switch when we multiply through by x^3 , so we have $x^3 \le x^3 \cos(1/x) \le -x^3$. But again, $\lim_{x\to 0^-} x^3 = 0 = \lim_{x\to 0^-} -x^3$, so by the Squeeze Theorem, $\lim_{x\to 0^-} x^3 \cos(1/x) = 0$. Since the left and right hand limits are the same, then we have that the overall limit is 0.

2. Evaluate $\lim_{x \to 7} \frac{\sqrt{x+2-3}}{x-7}.$

Solution: We want to multiply top and bottom by $\sqrt{x+2}+3$ to get $\lim_{x\to7} \frac{(\sqrt{x+2}-3)(\sqrt{x+2}+3)}{(x-7)(\sqrt{x+2}+3)} = \lim_{x\to7} \frac{1}{\sqrt{x+2}+3} = \frac{1}{\sqrt{9}+3} = \frac{1}{6}$.

3. Evaluate $\lim_{x \to 0} x \arctan\left(\frac{1}{x^2}\right)$.

Solution: Since the range of arctan is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so $-\frac{\pi}{2} \leq \arctan(1/x^2) \leq \frac{\pi}{2}$. Multiplying through by x gives $-\frac{\pi x}{2} \leq x \arctan(1/x^2) \leq \frac{\pi x}{2}$ if x is positive. Then $\lim_{x\to 0^+} -\frac{\pi x}{2} = \lim_{x\to 0^+} \frac{\pi x}{2} = 0$, so by the Squeeze Theorem, $\lim_{x\to 0^+} x \arctan\left(\frac{1}{x^2}\right) = 0$. If x is negative, then the inequalities flip when we multiply through by x, so we get $\frac{\pi x}{2} \leq x \arctan(1/x^2) \leq -\frac{\pi x}{2}$. Again $\lim_{x\to 0^-} \frac{\pi x}{2} = \lim_{x\to 0^-} -\frac{\pi x}{2} = 0$, so by the Squeeze Theorem, we get that $\lim_{x\to 0^-} x \arctan(1/x^2) = 0$. Since the right and left hand limits are the same, we have that the overall limit is 0. Notice that if we were multiplying through by an even power of x will always be a positive number regardless of what x is.

4. Evaluate $\lim_{x \to 0} \left(\frac{3}{x\sqrt{9-x}} - \frac{1}{x} \right)$.

Solution: We first want to combine the fractions in the limit to get $\frac{3}{x\sqrt{9-x}} - \frac{\sqrt{9-x}}{x\sqrt{9-x}} = \frac{3-\sqrt{9-x}}{x\sqrt{9-x}}$. We want to eventually get rid of the x in the denominator, since that is what is preventing us from just plugging in 0 to find the limit. Thus we will multiply the top and bottom by the conjugate of the numerator to get $\frac{9-(9-x)}{x\sqrt{9-x}(3+\sqrt{9-x})} = \frac{-x}{x\sqrt{9-x}(3+\sqrt{9-x})}$. Now when we take the limit, we can cancel the x on top and bottom to get $\lim_{x\to 0} \frac{-1}{\sqrt{9-x}(3+\sqrt{9-x})} = \frac{-1}{3(3+3)} = \frac{-1}{18}$.

5. Evaluate $\lim_{x \to 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$.

Solution: We want to multiply by a conjugate, the question is just, by which one? It turns out that it doesn't matter. Let's start by multiplying top and bottom by $\sqrt{6-x}+2$ (the conjugate of the numerator) to get $\frac{6-x-4}{(\sqrt{3-x}-1)(\sqrt{6-x}+2)} = \frac{2-x}{(\sqrt{3-x}-1)(\sqrt{6-x}+2)}$. Now we will multiply top and bottom by the conjugate of the denominator, $\sqrt{3-x}+1$. This gives us $\frac{(2-x)(\sqrt{3-x}+1)}{(3-x-1)(\sqrt{6-x}+2)} = \frac{(2-x)(\sqrt{3-x}+1)}{(2-x)(\sqrt{6-x}+2)}$. Now we can cancel the 2-x when we take the limit, so we have $\lim_{x\to 2} \frac{\sqrt{3-x}+1}{\sqrt{6-x}+2} = \frac{1+1}{2+2} = \frac{1}{2}$.