## Limit Techniques Practice - 10/14/16

1. Evaluate $\lim _{x \rightarrow 0} x^{3} \cos \left(\frac{1}{x}\right)$.

Solution: Note that the range of $\cos$ is $[-1,1]$, so $-1 \leq \cos (1 / x) \leq 1$. Multiplying through by $x^{3}$ gives us $-x^{3} \leq x^{3} \cos (1 / x) \leq x^{3}$ if $x$ is positive. Notice that $\lim _{x \rightarrow 0^{+}}-x^{3}=\lim _{x \rightarrow 0^{+}} x^{3}=$ 0 , so by the Squeeze Theorem, $\lim _{x \rightarrow 0^{+}} x^{3} \cos (1 / x)=0$. If $x$ is negative, the inequalities switch when we multiply through by $x^{3}$, so we have $x^{3} \leq x^{3} \cos (1 / x) \leq-x^{3}$. But again, $\lim _{x \rightarrow 0^{-}} x^{3}=0=\lim _{x \rightarrow 0^{-}}-x^{3}$, so by the Squeeze Theorem, $\lim _{x \rightarrow 0^{-}} x^{3} \cos (1 / x)=0$. Since the left and right hand limits are the same, then we have that the overall limit is 0 .
2. Evaluate $\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}$.

Solution: We want to multiply top and bottom by $\sqrt{x+2}+3$ to get $\lim _{x \rightarrow 7} \frac{(\sqrt{x+2}-3)(\sqrt{x+2}+3)}{(x-7)(\sqrt{x+2}+3)}=$ $\lim _{x \rightarrow 7} \frac{x+2-9}{(x-7)(\sqrt{x+2}+3)}=\lim _{x \rightarrow 7} \frac{1}{\sqrt{x+2}+3}=\frac{1}{\sqrt{9}+3}=\frac{1}{6}$.
3. Evaluate $\lim _{x \rightarrow 0} x \arctan \left(\frac{1}{x^{2}}\right)$.

Solution: Since the range of $\arctan$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so $-\frac{\pi}{2} \leq \arctan \left(1 / x^{2}\right) \leq \frac{\pi}{2}$. Multiplying through by $x$ gives $-\frac{\pi x}{2} \leq x \arctan \left(1 / x^{2}\right) \leq \frac{\pi x}{2}$ if $x$ is positive. Then $\lim _{x \rightarrow 0^{+}}-\frac{\pi x}{2}=$ $\lim _{x \rightarrow 0^{+}} \frac{\pi x}{2}=0$, so by the Squeeze Theorem, $\lim _{x \rightarrow 0^{+}} x \arctan \left(\frac{1}{x^{2}}\right)=0$. If $x$ is negative, then the inequalities flip when we multiply through by $x$, so we get $\frac{\pi x}{2} \leq x \arctan \left(1 / x^{2}\right) \leq$ $-\frac{\pi x}{2}$. Again $\lim _{x \rightarrow 0^{-}} \frac{\pi x}{2}=\lim _{x \rightarrow 0^{-}}-\frac{\pi x}{2}=0$, so by the Squeeze Theorem, we get that $\lim _{x \rightarrow 0^{-}} x \arctan \left(1 / x^{2}\right)=0$. Since the right and left hand limits are the same, we have that the overall limit is 0 . Notice that if we were multiplying through by an even power of $x$, we would not have to break our calculations into two cases, since an even power of $x$ will always be a positive number regardless of what $x$ is.
4. Evaluate $\lim _{x \rightarrow 0}\left(\frac{3}{x \sqrt{9-x}}-\frac{1}{x}\right)$.

Solution: We first want to combine the fractions in the limit to get $\frac{3}{x \sqrt{9-x}}-\frac{\sqrt{9-x}}{x \sqrt{9-x}}=\frac{3-\sqrt{9-x}}{x \sqrt{9-x}}$. We want to eventually get rid of the $x$ in the denominator, since that is what is preventing us from just plugging in 0 to find the limit. Thus we will multiply the top and bottom by the conjugate of the numerator to get $\frac{9-(9-x)}{x \sqrt{9-x}(3+\sqrt{9-x})}=\frac{-x}{x \sqrt{9-x}(3+\sqrt{9-x})}$. Now when we take the limit, we can cancel the $x$ on top and bottom to get $\lim _{x \rightarrow 0} \frac{-1}{\sqrt{9-x}(3+\sqrt{9-x})}=\frac{-1}{3(3+3)}=\frac{-1}{18}$.
5. Evaluate $\lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$.

Solution: We want to multiply by a conjugate, the question is just, by which one? It turns out that it doesn't matter. Let's start by multiplying top and bottom by $\sqrt{6-x}+2$ (the conjugate of the numerator) to get $\frac{6-x-4}{(\sqrt{3-x}-1)(\sqrt{6-x}+2}=\frac{2-x}{(\sqrt{3-x}-1)(\sqrt{6-x}+2)}$. Now we will multiply top and bottom by the conjugate of the denominator, $\sqrt{3-x}+1$. This gives us $\frac{(2-x)(\sqrt{3-x}+1)}{(3-x-1)(\sqrt{6-x}+2)}=\frac{(2-x)(\sqrt{3-x}+1)}{(2-x)(\sqrt{6-x}+2)}$. Now we can cancel the $2-x$ when we take the limit, so we have $\lim _{x \rightarrow 2} \frac{\sqrt{3-x}+1}{\sqrt{6-x}+2}=\frac{1+1}{2+2}=\frac{1}{2}$.

